View All Issues
Manipulation of Signal-to-Noise Ratio to Compensate for Variations in Word Identification Scores Due to Change in Masker | Journal of All India Institute of Speech and Hearing

ISSN


ISSN

Vol 39 No 1 (2020)
Hearing

Manipulation of Signal-to-Noise Ratio to Compensate for Variations in Word Identification Scores Due to Change in Masker

Published September 1, 2020
Keywords
  • SNR, White noise, Word identification, Children, Speech babble
How to Cite
Shreyank P. Swamy, & Asha Yathiraj. (2020). Manipulation of Signal-to-Noise Ratio to Compensate for Variations in Word Identification Scores Due to Change in Masker. Journal of All India Institute of Speech and Hearing, 39(1), 48-56. Retrieved from http://203.129.241.91/jaiish/index.php/aiish/article/view/1295

Abstract

The type of masking noise is known to affect speech identification. Some maskers are known to have a greater masking effect on speech than others. Thus, the study aimed to investigate whether manipulating the signal-to-noise ratio (SNR) of a masker can compensate for variations in word identification scores obtained due to change in the type of masker. To investigate this, the scores obtained by 20 children on a speech identification test using an 8-talker babble was compared with that obtained on a word identification test in the presence of white noise. The former test was evaluated at 0 dB SNR using the ‘Speech perception-in-noise in Kannada’ (SPIN-K) and the latter in three different SNRs (0 dB, -5 dB, & -10 dB) using the ‘Kannada Word identification-in-white noise’ (WIWN-K). Speech babble was found to have a greater masking effect at 0 dB SNR, resulting in poorer speech identification scores than white noise. However, the speech identification scores obtained using white noise at -10 dB SNR was equivalent to that of scores obtained with speech babble at 0 dB SNR. The study highlights that the masking effect of continuous white noise can be made equivalent to the masking effect of an 8-talker speech babble by reducing the SNR.

References

  1. American National Standard Institute. (1999). Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms (ANSI S3.1-R2013).
  2. Beattie, R. C., Barr, T., & Roup, C. (1997). Normal and hearing-impaired word recognition scores for monosyllabic words in quiet and noise. British journal of audiology, 31(3), 153-164. http://doi.org/10.3109/03005364000000018
  3. Ben-David, B. M., Tse, V. Y., & Schineider, B. A. (2012). Does it take older adults longer than younger adults to perceptually segregate a speech target from a background masker? Hearing Research, 290, 55-63. http://doi.org/10.1016/j.heares.2012.04.022
  4. Best, V., Conroy, C., & Kidd, J., G. (2020). Can background noise increase the informational masking in a speech mixture? The Journal of the Acoustical Society of America, 147(2), EL144-EL150. http://doi.org/10.1121/10.0000719
  5. Brungart, D. S. (2001). Informational and energetic masking effects in the perception of two simultaneous talkers. The Journal of the Acoustical Society of America, 109, 1101-1109. http://doi.org/10.1121/1.1345696
  6. Brungart, D. S., Simpson, B. D., Ericson, M. A., & Scott, K. R. (2001). Informational and energetic masking effects in the perception of multiple simultaneous talkers. Journal of the Acoustical Society of America, 110(5 Pt 1), 2527-2538. http://doi.org/10.1121/1.1408946
  7. Buss, E., Leibold, L. J., Porter, H. L., & Grose, J. H. (2017). Speech recognition in one- and two-talker maskers in school-age children and adults: Development of perceptual masking and glimpsing. The Journal of the Acoustical Society of America, 141(4), 2650-2660. http://doi.org/10.1121/1.4979936
  8. Carhart, R., Johnson, C., & Goodman, J. (1975). Perceptual masking of spondees by combination of talkers. Journal of the Acoustical Society of America, 58(S1), S35.
  9. Chermak, G. D., & Dengerink, J. (1981). Word identification in quiet and in noise: A re-examination. Scandinavian audiology, 10(1), 55-60. http://doi.org/10.3109/01050398109076162
  10. Chermak, G. D., Pederson, C. M., & Bendel, R. B. (1984). Equivalent forms and split-half reliability of the NU-CHIPS administered in noise. Journal of Speech & Hearing Disorders, 49(2), 196-201. http://doi.org/10.1044/jshd.4902.196
  11. Chermak, G. D., Vanhof, M. R., & Bendel, R. B. (1989). Word identification perfromance in the presence of competing speech and noise in learning disabled adults. Ear and Hearing, 10, 90-93. http://doi.org/10.1097/00003446-198904000-00002
  12. Chermak, G. D., Wagner, D. P., & Bended, R. B. (1988). Interlist equivalence of the word intelligibility by picture identification test administered in broad band noise. Audiology, 27(6), 324-333. http://doi.org/10.3109/00206098809081603
  13. Cooke, M. (2006). A glimpsing model of speech perception in noise. The Journal of the Acoustical Society of America, 119(3), 1562-1573. http://doi.org/10.1121/1.2166600
  14. Danhauer, J. L., & Leppler, J. G. (1979). Effects of four noise competitiors on the California Consonant Test. Journal of Speech and Hearing Disorders, 44, 354-362. http://doi.org/10.1044/jshd.4403.354
  15. de Boer, J., & Thornton, A. R. (2007). Effect of subject task on contralateral suppression of click evoked otoacoustic emissions. Hearing Research, 233(1-2), 117-123. http://doi.org/10.1016/j.heares.2007.08.002
  16. de Boer, J., & Thornton, A. R. (2008). Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task. The Journal of Neuroscience, 28(19), 4929-4937. http://doi.org/10.1523/JNEUROSCI.0902-08.2008
  17. Freyman, R. L., Balakrishna, U., & Helfer, K. S. (2004). Effect of number of masking talkers and auditory priming on informational masking in speech recognition. The Journal of the Acoustical Society of America, 115(5), 2246-2256. http://doi.org/10.1121/1.1689343
  18. Graham, R. L., & Hazell, J. W. P. (1994). Contralateral suppression of transient evoked otoacoustic emissions: intra-individual variability in tinnitus and normal subjects. British journal of audiology, 28(4-5), 235-245. http://doi.org/10.3109/03005369409086573
  19. Hood, L., Berlin, C. I., Hurley, A., Cecola, R. P., & Bell, B. (1996). Contralateral suppression of transient-evoked otoacoustic emissions in humans: intensity effects. Hearing Research, 101(1-2), 113-118. http://doi.org/10.1016/s0378-5955(96)00138-4
  20. Hood, L. J., Berlin, C. I., Wakefield, L., & Hurley, A. (1995). Noise duration affects bilateral, ipsilateral and contralateral suppression of transient-evoked otoacoustic emissions in humans. Journal of the Association for Research in Otolaryngology - Abstract, 18, 123.
  21. Iyer, N., Brungart, D. S., & Simpson, B. D. (2010). Effects of target-masker contextual similarity on the multimasker penalty in a three-talker diotic listening task. Journal of the Acoustical Society of America, 128(5), 2998-2910. http://doi.org/10.1121/1.3479547
  22. Jedrzejczak, W. W., Pilka, E., Olszewski, L., & Skarzynski, H. (2016). Short-term repeatability of contralateral suppression of transient evoked otoacoustic emissions: preliminary results. Journal of Hearing Science, 6(2), 51-57. http://doi.org/10.17430/899578
  23. Kalikow, D. N., Stevens, K. N., & Elliott, L. L. (1977). Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. The Journal of the Acoustical Society of America, 61(5), 1337-1351. http://doi.org/10.1121/1.381436
  24. Kidd, J., G., Arbogast, T. L., Mason, C. R., & Walsh, M. (2002). Informational masking in listeners with sensorineural hearing loss. Journal of the Association for Research in Otolaryngology, 3(2), 107-119. http://doi.org/10.1007/s1016200210095
  25. Killan, E. C., Brooke, R. E., Farrell, A., & Merrett, J. (2017). Clinically relevant long-term reliability of contralateral suppression of click-evoked otoacoustic emissions. Journal of Hearing Science, 7(2), 27-36. http://doi.org/10.17430/902926
  26. Kumar, U. A., & Vanaja, C. S. (2004). Functioning of olivocochlear bundle and speech perception in noise. Ear & Hearing, 25(2), 142-146. http://doi.org/10.1097/01.aud.0000120363.56591.e6
  27. Lee, J. Y., Lee, J. T., Heo, H. J., & Choi, C. H. (2015). Speech recognition in real-life background noise by young and middle-aged adults with normal hearing. Journal of Audiology and Otolaryngology, 19(1), 39-44. http://doi.org/10.7874/jao.2015.19.1.39
  28. Lewis, D., Hoover, B., Choi, S., & Stelmachowicz, P. (2010). Relationship between speech perception in noise and phonological awareness skills for children with normal hearing. Ear Hear, 31(6), 761-768. http://doi.org/10.1097/AUD.0b013e3181e5d188
  29. Li, N., & Loizou, P. C. (2007). Factors influencing glimpsing of speech in noise. The Journal of the Acoustical Society of America, 122, 1165-1172. http://doi.org/10.1121/1.2749454
  30. Mamatha, N. M., & Yathiraj, A. (2019). Variation in speech perception in noise as a function of age in typically developing children. Journal of Indian Speech Language Hearing Association, 33, 32-37. http://doi.org/10.4103/jisha.JISHA_17_18
  31. Mertes, I. B., Johnson, K. M., & Dinger, Z. A. (2019). Olivocochlear efferent contributions to speech-in-noise recognition across signal-to-noise ratios. The Journal of the Acoustical Society of America, 145(3), 1529-1540. http://doi.org/10.1121/1.5094766
  32. Mukari, S. Z., & Mamat, W. H. (2008). Medial olivocochlear functioning and speech perception in noise in older adults. Audiology & neuro-otology, 13(5), 328-334. http://doi.org/10.1159/000128978
  33. Olsen, W. O., Noffsinger, D., & Kurdziel, S. (1975). Speech discrimination in quiet and in white noise by patients with peripheral and central lesions. Acta Oto-Laryngologica, 80(1-6), 375-382. http://doi.org/10.3109/00016487509121339
  34. Prosser, S., Turrini, M., & Arslan, E. (1990). Effects of different noises on speech discrimination by the elderly. Acta Oto-laryngologica Supplementum, 476, 136-142. http://doi.org/10.3109/00016489109127268
  35. Sanches, S. G. G., & Carvallo, R. M. (2006). Contralateral suppression of transient evoked otoacoustic emissions in children with auditory processing disorder. Audiology & Neurotology, 11(6), 366-372. http://doi.org/10.1159/000095898
  36. Simpson, S. A., & Cooke, M. (2005). Consonant identification in N-talker babble is a nonmonotonic function of N (L). The Journal of the Acoustical Society of America, 118(5), 2775-2778. http://doi.org/10.1121/1.2062650
  37. Stuart, A., & Cobb, K. M. (2015). Reliability of measures of transient evoked otoacoustic emissions with contralateral suppression. Journal of communication disorders, 58, 35-42. http://doi.org/10.1016/j.jcomdis.2015.09.003
  38. Studebaker, G. A., Taylor, R., & Sherbecoe, R. L. (1994). The effect of noise spectrum on speech recognition performance-intensity functions. Journal of speech and hearing research, 37(2), 439-448. http://doi.org/10.1044/jshr.3702.439
  39. Swamy, S., P., & Yathiraj, A. (2019). Short-term reliability of different methods of contralateral suppression of transient evoked otoacoustic emission in Children and Adults. American journal of audiology, 28(2S), 495-507. http://doi.org/10.1044/2018_AJA-IND50-18-009
  40. Vaidyanath, R., & Yathiraj, A. (2012). Speech Perception-in-Noise test in Kannada (SPIN-K), Department of Audiology, All India Institute of Speech and Hearing. Mysuru.
  41. Wagner, W., Frey, K., Heppelmann, G., Plontke, S. K., & Zenner, H. (2008). Speech-in-noise intelligibility does not correlate with effeent olivocochlear reflex in humans with normal hearing. Acta Oto-Laryngologica, 128, 53-60. http://doi.org/10.1080/00016480701361954
  42. Yashaswini, L., & Maruthy, S. (2019). The Influence of Efferent Inhibition on Speech Perception in Noise: A Revisit Through Its Level-Dependent Function. American journal of audiology, 28(2S), 508-515. http://doi.org/10.1044/2019_AJA-IND50-18-0098
  43. Yathiraj, A., & Mascarenhas, K. (2004). Auditory profile of children with suspected auditory processing disorder. Journal of Indian Speech and Hearing Association, 18(1), 5-13.
  44. Yathiraj, A., & Vijayalakshmi, C. (2005). Phonemically balanced word identification test in Kannada, Department of Audiology, All India Institute of Speech and Hearing. Mysuru.