View All Issues
Cortical Auditory Evoked Potentials | Journal of All India Institute of Speech and Hearing

ISSN


ISSN

Vol 35 No 1 (2016)
Perspective Articles

Cortical Auditory Evoked Potentials: evidence for use in Clinical Practice

How to Cite
CS, V. (1). Cortical Auditory Evoked Potentials. Journal of All India Institute of Speech and Hearing, 35(1), 1-8. Retrieved from http://203.129.241.91/jaiish/index.php/aiish/article/view/916

Abstract

Electrophysiological measures are used during clinical evaluation to supplement and/or compliment the results of behavioural measures. Cortical auditory evoked potentials (CAEPs) have many clinical appli-
cations but are not widely used during clinical evaluation. However, considerable evidence exists in literature recommending the use of CAEPs in clinical practice. This article summarises these evidences highlighting
its strengths and limitations. The protocol recommended for recording CAEPs in clinical practice is also brie y discussed. 

References

Billings, C. J., & Grush, L. D. (2016). Sig-
nal type and signal-to-noise ratio interact to af-
fect cortical auditory evoked potentials. Journal of
the Acoustical Society of America, 140(2), EL221.
doi:10.1121/1.4959600.
Billings, C. J., Papesh, M. A., Penman, T. M., Baltzell,
L. S., & Gallun, F. J. (2012). Clinical use of
aided cortical auditory evoked potentials as a measure
of physiological detection or physiological discrimina-
tion. International Journal of Otolaryngology, 365752.
doi:10.1155/2012/365752
Billings, C. J., Tremblay, K. L., & Miller, C. W.
(2011). Aided cortical auditory evoked potentials
in response to changes in hearing aid gain. In-
ternational Journal of Audiology, 50(7), 459-467.
doi:10.3109/14992027.2011.568011
Billings, C. J., Tremblay, K. L., Souza, P. E., & Binns,
M. A. (2007). E ects of hearing aid ampli cation
and stimulus intensity on cortical auditory evoked po-
tentials. Audiology and Neurootology, 12(4), 234-246.
doi:10.1159/000101331
Cardon, G., & Sharma, A. (2013). Central auditory mat-
uration and behavioral outcome in children with audi-
tory neuropathy spectrum disorder who use cochlear im-
plants. International Journal of Audiology, 52(9), 577-
586. doi:10.3109/14992027.2013.799786
Chang, H. W., Dillon, H., Carter, L., Van Dun, B., &
Young, S. T. (2012). The relationship between corti-
cal auditory evoked potential (CAEP) detection and es-
timated audibility in infants with sensorineural hearing
loss. International Journal of Audiology, 51(9), 663-
670. doi:10.3109/14992027.2012.690076
Ching, T. Y., Zhang, V. W., Hou, S., & Van Buynder,
P. (2016). Cortical Auditory Evoked Potentials Re-
veal Changes in Audibility with Nonlinear Frequency
Compression in Hearing Aids for Children: Clinical
Implications. Seminars in Hearing, 37(1), 25-35.
doi:10.1055/s-0035-1570332
Cone, B., & Whitaker, R. (2013). Dynamics of in-
fant cortical auditory evoked potentials (CAEPs)
for tone and speech tokens. International Journal
of Pediatric Otorhinolaryngology, 77(7), 1162-1173.
doi:10.1016/j.ijporl.2013.04.030
Cunningham, J., Nicol, T., Zecker, S. G., Bradlow, A., &
Kraus, N. (2001). Neurobiologic responses to speech in
noise in children with learning problems: de cits and
strategies for improvement. Clinical Neurophysiology,
112(5), 758-767.
Easwar, V., Purcell, D. W., & Scollie, S. D. (2012).
Electroacoustic Comparison of Hearing Aid Output of
Phonemes in Running Speech versus Isolation: Im-
plications for Aided Cortical Auditory Evoked Poten-
tials Testing. International Journal of Otolaryngology,
518202. doi:10.1155/2012/518202
Gardner-Berry, K., Purdy, S. C., Ching, T. Y., & Dil-
lon, H. (2015). The audiological journey and early
outcomes of twelve infants with auditory neuropathy
spectrum disorder from birth to two years of age.
International Journal of Audiology, 54(8), 524-535.
doi:10.3109/14992027.2015.1007214
Gilley, P. M., Sharma, A., Dorman, M., & Mar-
tin, K. (2005). Developmental changes in re-
fractoriness of the cortical auditory evoked poten-
tial. Clinical Neurophysiology, 116(3), 648-657.
doi:10.1016/j.clinph.2004.09.009
Glista, D., Easwar, V., Purcell, D. W., & Scollie, S.
(2012). A Pilot Study on Cortical Auditory Evoked
Potentials in Children: Aided CAEPs Re
ect Improved
High-Frequency Audibility with Frequency Compression
Hearing Aid Technology. International Journal of Oto-
laryngology, 982894. doi:10.1155/2012/982894
Golding, M., Pearce, W., Seymour, J., Cooper, A., Ching,
T., & Dillon, H. (2007). The relationship between
obligatory cortical auditory evoked potentials (CAEPs)
and functional measures in young infants. Journal
of the American Academy of Audiology, 18(2), 117-
125.
Harris, K. C., Wilson, S., Eckert, M. A., & Dubno, J.
R. (2012). Human evoked cortical activity to silent
gaps in noise: e ects of age, attention, and cortical
processing speed. Ear and Hearing, 33(3), 330-339.
doi:10.1097/AUD.0b013e31823fb585
Hemanth, N. (2015). Representation of ampli ed speech
at the brainstem and cortical levels of the auditory
pathway in individuals with sensorineural hearing loss.
Doctoral thesis submitted to the Univeristy of Mysore,
Mysore.
Jenstad, L. M., Marynewich, S., & Stapells, D. R. (2012).
Slow cortical potentials and ampli cation - Part II:
Acoustic measures. International Journal of Otolaryn-
gology, 386542. doi:10.1155/2012/386542
Jirsa, R. E., & Clontz, K. B. (1990). Long latency audi-
tory event-related potentials from children with audi-
tory processing disorders. Ear and Hearing, 11(3), 222-
232.
Korczak, P. A., Kurtzberg, D., & Stapells, D. R. (2005). Ef-
fects of sensorineural hearing loss and personal hearing
aids on cortical event-related potential and behavioral
measures of speech-sound processing. Ear and Hearing,
26(2), 165-185.
Korczak, P. A., & Stapells, D. R. (2010). E ects of var-
ious articulatory features of speech on cortical event-
related potentials and behavioral measures of speech-
sound processing. Ear and Hearing, 31(4), 491-504.
doi:10.1097/AUD.0b013e3181d8683d
Koul, S., & Vanaja, C. S. (2010). Speech evoked Auditory
Late Latency Response (ALLR) in hearing aid selection.
Student research at A.I.I.S.H. Mysore (Articles based on
dissertations done at AIISH), vol. V, 174-186.
Kraus, N., Bradlow, A. R., Cheatham, M. A., Cunningham,
J., King, C. D., Koch, D. B., . . . Wright, B. A. (2000).
Consequences of neural asynchrony: a case of auditory
neuropathy. Journal of the Association of Research in
Otolaryngology, 1(1), 33-45.
Kumar, A. U., & Jayaram, M. (2005). Auditory process-
ing in individuals with auditory neuropathy. Behavioral
and Brain Functions, 1, 21. doi:10.1186/1744-9081-1-
21
Lightfoot, G. (2016). Summary of the n1-p2 cortical
auditory evoked potential to estimate the auditory
threshold in adults. Seminars in Hearing, 37(1), 1-8.
doi:10.1055/s-0035-1570334
Lightfoot, G., & Kennedy, V. (2006). Cortical elec-
tric response audiometry hearing threshold estimation:
accuracy, speed, and the e ects of stimulus presen-
tation features. Ear and Hearing, 27(5), 443-456.
doi:10.1097/01.aud.0000233902.53432.48
Marynewich, S., Jenstad, L. M., & Stapells, D. R. (2012).
Slow cortical potentials and ampli cation-part I: n1-
p2 measures. International Journal of Otolaryngol-
ogy,921513. doi:10.1155/2012/921513
Munro, K. J., Purdy, S. C., Ahmed, S., Begum, R.,
& Dillon, H. (2011). Obligatory cortical audi-
tory evoked potential waveform detection and di er-
entiation using a commercially available clinical sys-
tem: HEARLab. Ear and Hearing, 32(6), 782-786.
doi:10.1097/AUD.0b013e318220377e
Narne, V. K., Barman, A., & Sinha, S. K. (2011). Cortical
potentials as a measure of temporal processes. (Depart-
mental project ), Mysore.
Narne, V. K., & Vanaja, C. S. (2008). Speech identi ca-
tion and cortical potentials in individuals with auditory
neuropathy. Behavioral and Brain Functions, 4(15).
doi:10.1186/1744-9081-4-15
Pearce, W., Golding, M., & Dillon, H. (2007). Cortical au-
ditory evoked potentials in the assessment of auditory
neuropathy: two case studies. Journal of the American
Academy of Audiology, 18(5), 380-390.
Picton, T. W. (1991). Clinical usefulness of auditory evoked
potentials: A critical evaluation. Journal of Speech-
Language Pathology and Audiology, 15(1), 3-18.
Picton, T. W. (2010). Human auditory evoked potentials:
Plural Publishing.
Punch, S., Van Dun, B., King, A., Carter, L., & Pearce, W.
(2016). Clinical Experience of Using Cortical Auditory
Evoked Potentials in the Treatment of Infant Hearing
Loss in Australia. Seminars in Hearing, 37(1), 36-52.
doi:10.1055/s-0035-1570331
Purdy, S. C., & Kelly, A. S. (2016). Change in Speech
Perception and Auditory Evoked Potentials over Time
after Unilateral Cochlear Implantation in Postlingually
Deaf Adults. Seminars in Hearing, 37(1), 62-73.
doi:10.1055/s-0035-1570329
Rance, G., Cone-Wesson, B., Wunderlich, J., & Dowell, R.
(2002). Speech perception and cortical event related po-
tentials in children with auditory neuropathy. Ear and
Hearing, 23(3), 239-253.
Rapin, I., & Graziani, L. J. (1967). Auditory-evoked re-
sponses in normal, brain-damaged, and deaf infants.
Neurology, 17(9), 881-894.
Rapin, I., Schimmel, H., & Cohen, M. M. (1972). Reliabil-
ity in detecting the auditory evoked response (AER) for
audiometry in sleeping subjects. Electroencephalography
and Clinical Neurophysiology, 32(5), 521-528.
Roland, P., Henion, K., Booth, T., Campbell,
J. D., & Sharma, A. (2012). Assessment of
cochlear implant candidacy in patients with cochlear
nerve de ciency using the P1 CAEP biomarker.
Cochlear Implants International, 13(1), 16-25.
doi:10.1179/146701011X12962268235869
Sharma, A., Campbell, J., & Cardon, G. (2015). De-
velopmental and cross-modal plasticity in deafness:
evidence from the P1 and N1 event related po-
tentials in cochlear implanted children. Interna-
tional Journal of Psychophysiology, 95(2), 135-144.
doi:10.1016/j.ijpsycho.2014.04.007
Sharma, A., & Cardon, G. (2015). Cortical develop-
ment and neuroplasticity in Auditory Neuropathy Spec-
trum Disorder. Hearing Research, 330(Pt B), 221-232.
doi:10.1016/j.heares.2015.06.001
Sharma, A., Dorman, M. F., & Spahr, A. J. (2002). A sen-
sitive period for the development of the central auditory
system in children with cochlear implants: implications
for age of implantation. Ear and Hearing, 23(6), 532-
539. doi:10.1097/01.AUD.0000042223.62381.01
Sharma, A., Glick, H., Deeves, E., & Duncan, E. (2015).
The P1 biomarker for assessing cortical maturation in
pediatric hearing loss: a review. Otorhinolaringologia,
65(4), 103-114.
Sharma, A., Kraus, N., McGee, T. J., & Nicol, T. G. (1997).
Developmental changes in P1 and N1 central auditory re-
sponses elicited by consonant-vowel syllables. Electroen-
cephalography Clinical Neurophysiology, 104(6), 540-
545.
Sharma, A., Martin, K., Roland, P., Bauer, P., Sweeney,
M. H., Gilley, P., & Dorman, M. (2005). P1 latency
as a biomarker for central auditory development in chil-
dren with hearing impairment. Journal of the American
Academy of Audiology, 16(8), 564-573.
Singh, N., & Barman, A. n. (2010). Importance of Long La-
tency Potentials in Pediatric Hearing Assessment. Stu-
dent research at A.I.I.S.H. Mysore (Articles based on
dissertations done at AIISH), vol. V, 114-126.
Souza, P. E., & Tremblay, K. L. (2006). New perspectives on
assessing ampli cation e ects. Trends in Ampli cation,
10(3), 119-143. doi:10.1177/1084713806292648
Srividya, B. A., & Vanaja, C. S. (2003). LLR as a measure of
temporal integration. The Journal of the Indian Speech
and Hearing Association, 17, 32-39.
Tomlin, D., & Rance, G. (2016). Maturation of the Cen-
tral Auditory Nervous System in Children with Audi-
tory Processing Disorder. Seminars in Hearing, 37(1),
74-83. doi:10.1055/s-0035-1570328
Tremblay, K. L., Kalstein, L., Billings, C. J., &
Souza, P. E. (2006). The neural representation of
consonant-vowel transitions in adults who wear hear-
ing AIDS. Trends in Ampli cation, 10(3), 155-162.
doi:10.1177/1084713806292655
Tremblay, K. L., & Kraus, N. (2002). Auditory training
induces asymmetrical changes in cortical neural activ-
ity. Journal of Speech Language and Hearing Research,
45(3), 564-572.
Tremblay, K. L., Shahin, A. J., Picton, T., & Ross,
B. (2009). Auditory training alters the physi-
ological detection of stimulus-speci c cues in hu-
mans. Clinical Neurophysiology, 120(1), 128-135.
doi:10.1016/j.clinph.2008.10.005
Vaidyanathan, R. (2015). E ect of temporal processing
training in older adults with temporal processing de cits.
Doctoral thesis submitted to the university of Mysore,
Mysore.
Van Dun, B., Dillon, H., & Seeto, M. (2015). Estimating
Hearing Thresholds in Hearing-Impaired Adults through
Objective Detection of Cortical Auditory Evoked Poten-
tials. Journal of the American Academy of Audiology,
26(4), 370-383. doi:10.3766/jaaa.26.4.5
Van Dun, B., Kania, A., & Dillon, H. (2016). Cortical Au-
ditory Evoked Potentials in (Un)aided Normal-Hearing
and Hearing-Impaired Adults. Seminars in Hearing,
37(1), 9-24. doi:10.1055/s-0035-1570333
Vanaja, C. S., & Khandelwal, N. (2016). Cortical auditory
evoked potentials in persons using hearing aids. Oto-
laryngology Open Journal, 2(3), 80-86.
Vanaja, C. S., & Manjula, P. (2004). LLR as a measure of
bene t derived from hearing devices with auditory dys-
synchrony. Paper presented at the First Conference on
Auditory Neuropathy, Bangalore.
Vanaja, C. S., & Maruthy, S. (2004). Auditory long
latency response in children with learning disability.
Mysore.
Wible, B., Nicol, T., & Kraus, N. (2002). Abnormal neu-
ral encoding of repeated speech stimuli in noise in chil-
dren with learning problems. Clinical Neurophysiology,
113(4), 485-494.
Wunderlich, J. L., Cone-Wesson, B. K., & Shep-
herd, R. (2006). Maturation of the cortical
auditory evoked potential in infants and young
children. Hearing Research, 212(1-2), 185-202.
doi:10.1016/j.heares.2005.11.010
Yuvaraj, P., & Mannarukrishnaiah, J. (2015). Cor-
tical Evoked Potentials and Hearing Aids in In-
dividuals with Auditory Dys-Synchrony. Journal
of International Advanced Otology, 11(3), 236-242.
doi:10.5152/iao.2015.1162